
RNBERT: FINE-TUNING A MASKED LANGUAGE MODEL FOR ROMAN
NUMERAL ANALYSIS

Malcolm Sailor
Yale University

malcolm.sailor@gmail.com

ABSTRACT

Music is plentiful, but labeled data for music theory tasks
like roman numeral analysis is scarce. Self-supervised pre-
training is therefore a promising avenue for improving per-
formance on these tasks, especially because, in learning a
task like predicting masked notes, a model may acquire
latent representations of music theory concepts like keys
and chords. However, existing models for roman numeral
analysis have not used pretraining, instead training from
scratch on labeled data, while conversely, pretrained mod-
els for music understanding have generally been applied
to sequence-level tasks requiring little explicit music the-
ory, such as composer classification. In contrast, this pa-
per applies pretraining methods to a music theory task by
fine-tuning a masked language model, MusicBERT, for ro-
man numeral analysis. We apply token classification to
get a chord label for each note and then aggregate the pre-
dictions of simultaneous notes to achieve a single label at
each time step. The resulting model substantially outper-
forms previous roman numeral analysis models. Our ap-
proach can readily be extended to other note- and/or chord-
level music theory tasks (e.g., nonharmonic tone analysis,
melody harmonization).

1. INTRODUCTION

Roman numeral analysis is the task of identifying the
chords in a piece of music and then indicating their role
with respect to the current key. Although it was developed
in the European classical tradition, it is an essential ele-
ment of the musical toolkit for musicians working in many
different Western-derived styles (for instance, a jazz musi-
cian might speak of a “ii-V to vi (‘two-five to six’)” or a
pop musician might say “the bridge starts on IV”).

A small but growing literature has employed deep learn-
ing models for automatic Roman numeral analysis of sym-
bolic music (Section 2), training the models from scratch
on labeled data. But labeled data for Roman numeral
analysis is scarce, whereas symbolic music is compar-
atively plentiful. Self-supervised pretraining therefore
seems likely to yield dividends, especially considering
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that, in order to perform a self-supervised task, the model
can be expected to learn latent representations of music
theory concepts like chords and scales: if you need to pre-
dict a given musical note, you will do a lot better if you can
estimate the expected key and chord. Moreover, as a gen-
eral matter, it seems likely that it will prove more efficient
and more practical for MIR researchers and music theo-
rists to fine-tune large-scale foundation models for spe-
cific analytical tasks, rather than training bespoke models
from scratch for every task. These considerations inspire
the present work, where we fine-tune a masked language
model on Roman numeral analysis, obtaining state-of-the-
art classification accuracy. 1

2. RELATED WORK

Whereas automatic chord recognition using audio signals
has an extensive literature [1], this paper contributes to a
smaller body of work on Roman numeral analysis of sym-
bolic music, which is both an easier and a harder prob-
lem. Easier, because working with symbolic data means
the model does not need to devote capacity to identifying
the sounding pitches, but harder, because Roman numeral
analysis requires not only identifying chords but also de-
scribing their harmonic function within their tonal context
(e.g., rather than simply labeling a chord as “E major”, la-
beling it as “V6/vi in C major”). Details of Roman numeral
analysis are beyond the scope of this paper but are covered
in any textbook of classical harmony such as [2, 3].

While earlier work employed various approaches for
automated Roman numeral analysis, more recently, deep
learning has come to predominate, including recurrent
models [4–7], transformers [8, 9], and, most recently,
graph-based architectures [10]. As far as we know, the best
performance in the existing literature has been obtained by
AugmentedNet [6,7] and ChordGNN [10], and we compare
our results below with those reported in [6, 10]. 2

All of these models for Roman numeral analysis are
trained from scratch, not making use of self-supervised
pretraining. A hitherto separate area of research is pre-
training large models for the understanding of symbolic
music. Both MusicBERT [11], the model used in this
paper, and MidiBERT-Piano [12] pretrain BERT-like [13]

1 We release the code to reproduce our results at https://github.
com/malcolmsailor/rnbert.

2 Unfortunately, the results of [7] are reported in a manner that makes
them difficult to compare directly with these other papers and with our
own results.
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encoder-only transformers on a masked language model-
ing task. [14] adds a GPT-like causal language modeling
task as well. So far, these pretrained models have mainly
been fine-tuned on sequence-level tasks such as composer,
genre, or emotion classification. As far as we know, none
of these pretrained models have been applied to Roman
numeral analysis, or any other problem involving the pre-
diction of explicit music-theoretical labels.

3. EXPERIMENTAL SETUP

3.1 Corpus

To our knowledge, the corpus used in this study is the
largest yet assembled for Roman numeral analysis. The
major components of this corpus include the various cor-
pora released by the Digital and Cognitive Musicology
Lab [15–17], the TAVERN set of theme and variations by
Beethoven and Mozart [18], the set of Beethoven Piano
Sonatas first movements introduced in [4], and the various
other items included in the When in Rome meta-corpus
[19], including analyses of Bach preludes and chorales,
and a large number of 19th century lieder, including works
of women composers. The total contents of this corpus are
enumerated in the first line of Table 1.

Data subset Scores Notes Chords
All 1,404 1,289,888 161,473
AugmentedNet v1 347 701,703 77,570

Table 1. Overall contents of the datasets used for training
and evaluation.

For a fair comparison with [6, 10], we also train and
evaluate on the subset of our data used in those papers,
employing the same training/validation/testing splits. 3 We
refer to this subset as “AugmentedNet v1” to distinguish it
from the somewhat larger dataset used in [7]. Note that, for
scores having two analyses (in particular, the scores of the
TAVERN dataset, where each score was analyzed by two
separate annotators), AugmentedNet v1 includes both ver-
sions (following [6]), whereas in the full corpus, we ran-
domly choose only one of the two versions for inclusion.
AugmentedNet v1’s note count is substantially increased
by the inclusion of these duplicate TAVERN scores, which
comprise 106,981 notes.

Unlike some prior work (e.g., [6, 9]), we do not ex-
periment with training and/or evaluating on smaller, more
homogenous subsets of our corpus (for example, the
Beethoven piano sonatas only). Our goal is to train the
best and most general Roman numeral analysis model we
can and we expect that such a model will be best obtained
and evaluated by using as much data as possible.

3 7 scores from AugmentedNet v1 were excluded because of prepro-
cessing errors (for example, because they include time signatures not sup-
ported by MusicBERT’s OctupleMIDI encoding scheme). These scores
exclusively came from the training split and so, if their omission has
any effect on RNBert’s performance relative to that of the other models
trained on the AugmentedNet v1 dataset, it should bias it downwards.

3.2 Data representation

Figure 1. A hypothetical musical example and its analysis,
before and after salami-slicing.

Onset 0 0 0 2 2 2 3 3 3
Release 2 2 2 3 3 3 4 4 4
Pitch 59 67 79 62 69 79 62 69 78
RN I6 I6 I6 V V V V V V
Key G G G G G G G G G

Table 2. The example from Figure 1 in tabular format after
salami-slicing. Time signatures, tempi, and bar lines are
omitted.

The scores associated with the analyses in our dataset
are encoded in a variety of formats, such as MusicXML
(.xml or .mxl), MuseScore (.mscx), or Humdrum (.krn).
We convert these into a tabular format, illustrated in
Table 2, labeling each note with the associated key and
chord annotation. Note that, because we use a model
that was pretrained on MIDI data, which does not spec-
ify pitch-spelling, our pitch inputs are not spelled (that is,
they use midi numbers like “78” rather than pitch names
like “F#5”). For further discussion, see Section 3.3.1.

When reading scores, we apply several preprocessing
steps.

First, following MusicBERT, the score is quantized at
the 64th note level.

Second, we “salami-slice” the score: at each timestep
with one or more onsets or releases, we split any ongo-
ing notes into two, in order to obtain a purely homophonic
rhythmic texture in which all onsets and releases are syn-
chronized across all parts. (The term “salami-slicing” is
due to [20].) Salami-slicing is necessary to ensure that
each note belongs to only one chord. Otherwise, a note
may persist through multiple changes of chord, either be-
cause it is a common tone among each of the chords (like
the alto D in Figure 1), or because it realizes a suspension
or similar dissonant idiom (like the soprano G in Figure 1).
Fortunately for our purposes, salami-slicing should not af-
fect harmonic analysis, because it does not change the
pitch content of the score. Moreover, musical idioms like
suspensions and pedal tones that cross changes of chord are
analyzed the same whether or not they are tied or sounded
anew at the onset of the new chord.

Third, we dedouble the notes of the score, removing
any notes that have the same pitch, onset, and release (re-
gardless of whether they are performed by the same in-
strument). Dedoubling has two advantages. First, it re-
duces the sequence length. Second, it produces a more
homogeneous texture between music for small ensembles,



where pitch doubling is less common, and music for large
ensembles like orchestras, where pitch doubling is ubiqui-
tous. Such homogeneity is particular desirable since nearly
all the available labeled scores are small-ensemble works
like piano sonatas and string quartets, but we would like
our model to generalize to large-ensemble works like sym-
phonies and operas.

MusicBERT has a maximum sequence length of 1000
tokens. Therefore, in both training and evaluation, we crop
scores into segments of 1000 tokens, stepping through the
score with a hop size of 250.

3.3 Task

Roman numeral analysis involves labeling chords with in-
tegers (Roman numerals) indicating their root with respect
to the scale of the current key (e.g., “V” in C major indi-
cates that the root is G, the 5th scale degree). Figured-bass
numerals are typically appended to to indicate the chord’s
inversion (e.g., “6” for first inversion). While the quality of
the chord is often assumed to conform to the scale, alter-
ations of quality can be indicated according to a variety of
conventions (e.g., upper-/lower-case for major/minor, ap-
pending “+” or “o” to indicate augmented or diminished
chords, or combining figured-bass numerals with acciden-
tal signs). The Roman numerals can be prefixed with acci-
dentals to indicate altered scale degrees (for example, bVI
in C major would be A-flat). “Tonicizations”—that is, one
or more chords borrowed from another key—can be indi-
cated by “secondary” Roman numerals, typically follow-
ing a slash, as in “V/ii”, which in C major would indicate
the V chord of d minor. Finally, since the Roman numeral
only indicates a harmony with respect to some key, for a
Roman numeral to be meaningful, we need to indicate the
key as well.

Since a complete Roman numeral consists of multiple
distinct elements, the combinatorial space of these ele-
ments is very large. Encoding each distinct combination
as a token, would require a large and sparse vocabulary,
posing challenges for training and generalization. There-
fore, the approach adopted here and elsewhere is to treat
Roman numeral analysis as a multitask learning problem,
where we predict the key, quality, inversion, and degree
separately. (The degree is sometimes further decomposed
into “primary” and “secondary” components, but in the
current work, we predict these jointly.) It should be noted,
however, that this multitask may approach obtain a smaller
vocabulary size at the expense of some coherence among
the different elements of the Roman numeral. For exam-
ple, suppose there is a passage that is ambiguous between
I and vi6 (two chords which share two of their three pitch-
classes as well as the same bass note). If the model dis-
tributes the probability roughly equally between the two
possibilities it may easily occur that the inversion and de-
gree predictions “decohere” and we end up with a plainly
incorrect prediction like I6 (rather than I) or vi (rather than
vi6). (One solution to this problem of decoherence was
proposed by [21], which we discuss in Section 3.6 below.)

3.3.1 Pitch spelling

One difference between our approach and some prior work
(e.g., [5, 7]) is that MusicBERT uses unspelled pitch in-
puts (midi numbers like “67”) rather than letter names (like
“F#5”). Our output key predictions are therefore also un-
spelled (e.g., pitch-class 6, rather than “F-sharp”) because,
with unspelled inputs, the output spelling is undefined. 4

We consider our model’s inability to predict spelled
keys unimportant. Given spelled inputs (e.g., pitches like
“Db5” rather than MIDI numbers like “61”) and an un-
spelled key (e.g., “1 major”), predicting a spelled key (e.g.,
“Db major”) is trivial and could likely be performed with
perfect accuracy by a rule-based algorithm (e.g., taking the
enharmonically equivalent key closest to the centroid of
the spelled pitches on the “line of fifths” [23]). Moreover,
keys with plausible enharmonic equivalents (like F-sharp
major or E-flat minor) are rarely used. Their classification
is therefore unlikely to significantly affect validation/test
performance.

3.4 Data augmentation

We employ two data augmentation techniques on the train-
ing data. First, we transpose each score to all 12 keys of
the chromatic scale. Second, we create a version of each
score with the durations scaled by a factor of 2. If the mean
duration in the score is greater than the mean duration of
the training set as a whole, we scale its durations down by
2; if it is less, we scale them up by 2.

We experimented with adding synthetic data similar to
the procedure introduced in [6,7] and also adopted in [10].
However, we did not find that it improved the model per-
formance. It is possible that synthetic data was less helpful
in our case than with AugmentedNet [7] because, whereas
for that model, the inputs consist of pitch-vectors at each
time step, for our model, the inputs are simply the notes of
the score, and therefore the difference between synthetic
and real data is more apparent to the model.

3.5 Model

3.5.1 MusicBERT

The model that we fine-tune, MusicBERT [11], is a bidi-
rectional transformer encoder pretrained on a masked lan-
guage modeling task. The dataset for pretraining is a cor-
pus of over 1 million midi files, 3 orders of magnitude
larger than our Roman numeral dataset. This difference
in scale motivates the use of a pretrained model. We chose
MusicBERT for our experiments because, of the pretrained
symbolic music models of which we are aware, it used the
largest pretraining dataset (by comparison, [12] pretrains
on fewer than 5,000 scores of exclusively piano music) and
also because of the elegance of the OctupleMIDI scheme
MusicBERT uses to encode its inputs. A more detailed

4 This is because the only difference between enharmonically equiva-
lent keys like F-sharp and G-flat is how they are notated. Certain pieces
of music, such as Fugue no. 8 of Bach’s Well-tempered Clavier, Book
1, have even been variously printed in two enharmonically equivalent
keys [22].



comparison fine-tuning symbolic music models for Roman
numeral analysis will have to await further work.

In the OctupleMIDI encoding, eight features of a mu-
sical note are first embedded individually: time signature,
tempo, bar number, metric position within the bar, pitch,
duration, and velocity. 5 To obtain a single input at each
time step, these eight embeddings are concatenated and
then projected to the model’s embedding dimension. Octu-
pleMIDI reduces the sequence length when compared with
other encoding schemes like Midi-like [24,25], REMI [26],
or Compound Word [27]. This reduction occurs because
in OctupleMIDI, tokens and notes are in one-to-one corre-
spondence, whereas the other schemes use tokens for other
items such as time-signatures or barlines. For our use case,
the fact that all tokens correspond to notes has the added
virtue that we do not waste computations classifying non-
note tokens.

In our experiments, we use the MusicBERT “base” ar-
chitecture, whose hyperparameters are modeled on those
of the BERT base architecture ( [13]), with a hidden di-
mension of 768, 12 layers, and 12 attention heads. We use
the pretrained checkpoint provided by [11]. For further de-
tails we refer the reader to the original MusicBERT paper.

MusicBERT is not trained solely or even mainly on
Classical music, whereas our annotated data consists en-
tirely of Classical music. This does not seem likely to be a
problem, because in the first place, a great deal of the tonal
idiom (i.e., keys, chords) is shared between different styles
of tonal music, and tonal music surely predominates in
MusicBERT’s training set. Moreover, to pretrain on only
classical music would mean greatly reducing the amount
of training data, as it’s extremely unlikely that 1,000,000
distinct midi files of Classical music exist. ( [20] is based
on what is to our knowledge the largest corpus of Classical
midi files in existence and features under 15,000 files.)

3.5.2 Token classification

To perform Roman numeral analysis, we adopt a token
classification approach, predicting the key and Roman nu-
meral for each token in the input. Since each token cor-
responds to a note, this amounts to predicting the chord
during which each note occurs. While training, we calcu-
late the loss on a per-token basis. In evaluation, in order to
obtain a single prediction for each salami slice, we average
the logits of simultaneous notes.

The token-classification heads are two-layer multilayer
perceptrons (MLPs) whose inner dimension is the embed-
ding dimension of the model (768, in our experiments).

To obtain the overall loss, we simply take the mean of
the cross-entropy loss for each individual task. We tried
learning a weighting of the contribution of each task to the
global loss, following the approach introduced by [28] and
implemented in an MIR context by [29], but observed a
small degradation in model quality when doing so.

5 Midi velocity is encoded in the OctupleMIDI format but is absent
from the symbolic scores of our dataset. Therefore, we use a default
value of 96 for all note velocities in our dataset.

3.5.3 Fine-tuning procedure

In our fine-tuning experiments, we found it important to
freeze parts of the model to reduce the number of train-
able parameters and avoid overfitting. Freezing the first 9
layers of MusicBERT seemed to give the best results. The
parameter counts are given in Table 3.

We used a learning rate of 2.5 × 10−4 with a linear
warmup of 2500 steps followed by a linear decay of the
learning rate to 0. When training on multi-task Roman nu-
meral classification, we fine-tuned for 50,000 steps. When
training on key classification only (see Section 3.6), we
fine-tuned for 25,000 steps.

When experimenting with varying these hyperparame-
ters, we did not typically find their precise values to have
much effect on the performance of the model. This implies
that the fine-tuning is fairly robust to different hyperparam-
eter choices.

Model Total Trainable
Base 108,805,598 26,782,729
Key conditioned 111,023,816 28,859,891

Table 3. RNBert parameter counts.

3.6 Key conditioning

In preliminary versions of RNBert, we found that high en-
tropy of the output probabilities for the degree task seemed
to mainly occur in two distinct scenarios. The first scenario
involved unusual or hard-to-analyze chords, where high
entropy is to be expected. The second scenario involved
chords that, given a key, were straightforward to analyze,
but where the model appeared to be uncertain about the
choice of key. 6 To illustrate this latter scenario, suppose
we are analyzing a passage, and we recognize an A minor
chord, but we are uncertain whether the key is C major or
G major. In that case, though we will not know whether
to label it with “vi” or “ii,” this uncertainty isn’t about the
chord itself, but only about the key. If the model distributes
the probability mass roughly evenly between the two pos-
sibilities, it may emit an incoherent composite prediction
like “ii of C major” (a D minor chord) or “vi of G major”
(an E minor chord). In general, the degree task depends
on the key task in this way. Therefore, in some of our
experiments, we made the Roman numeral prediction by
conditional on the key.

In these key-conditioned experiments, we embed the
key tokens with a two-layer MLP with hidden and out-
put dimensions of 256 and GELU activation. 7 We then

6 We do not have space to discuss this further, but there are music
theoretic reasons to think that a certain degree of uncertainty about key
annotations is inevitable because the key of certain passages, especially
transitional ones, can be analyzed in more than one way.

7 In principle, we should be able to replace this MLP with a simple
embedding layer and obtain the same results. In practice, however, we
found that using a simple embedding layer barely improved performance
above the unconditioned baseline, even with teacher forcing. We suspect
that this occurs because the loss landscape of the MLP has better training
dynamics. After training, on the other hand, it should be possible to re-
place the MLP with an embedding table that simply encodes the output



concatenate this key embedding with the output from Mu-
sicBERT to obtain the input to the Roman numeral classi-
fication heads.

In training, we employ teacher forcing, that is, we con-
dition on the ground-truth key annotations from the labeled
data. In evaluation, we first predict the key with a sepa-
rately fine-tuned model, then condition the chord predic-
tions on these predicted keys.

Another attempt to encourage coherence between key
and Roman numeral predictions is [21], who use a neu-
ral autoregressive distribution estimator (NADE). Their ap-
proach extends beyond ours insofar as it conditions each
sub-task of the Roman numeral classification on the previ-
ous tasks. In preliminary experiments applying a similar
approach to RNBert, we observed a small decline in per-
formance across all metrics. We defer to future work a
qualitative evaluation of these predictions and further sim-
ilar experiments.

3.7 Post-processing steps

In postprocessing, we collate the predictions from each
segment, combining the overlapping logits of adjacent seg-
ments by linearly interpolating between them. (By analogy
to audio signal processing we could say that we cross-fade
between the logits of neighboring segments.) We then av-
erage the logits of simultaneous notes to obtain a single set
of logits for each salami-slice.

To avoid implausibly brief key changes of one or two
salami-slices’ duration (which otherwise sometimes oc-
cur at transitions between keys, when the model estimates
both keys to be approximately equiprobable), we use a dy-
namic programming approach to decode the key predic-
tions. Specifically, we employ the Viterbi algorithm, us-
ing RNBert’s output probabilities as the emission prob-
abilities and defining a transition probability matrix that
is uniform, except for self-transitions, whose probabilities
are upweighted. This decoding scheme has a negligible
effect on the measured accuracy of the predictions, while
effectively eliminating implausibly brief key changes.

4. RESULTS AND DISCUSSION

Table 4 provides our results, expressed following [6] as
the proportion of time the predicted labels are accurate,
with 32nd-note resolution. We give two sets of re-
sults: on lines 1 to 3, training on the dataset and train-
ing/validation/testing splits used by [6, 10] for a fair com-
parison with these prior papers, and on lines 4 to 6, training
on our complete dataset.

Concerning the composite “RN” labels, RN-root refers
to the conjunction of degree, quality, inversion, and key,
while RN+root adds to these the chord root. Predicting the
root is redundant: the root of a Roman numeral is a deter-
ministic function of the degree and key (e.g., the root of #iv
in C major is F-sharp). There is hence no need to include

of the MLP for each key. However, the MLP contributes such a small
proportion of the model’s overall parameter count that we did not bother
to do so.

it in the composite Roman numeral, or indeed, to predict it
at all. Therefore, when training RNBert on our full dataset,
we do not predict the root and report only RN-root. When
training on the AugmentedNet v1 data subset, in contrast,
in order to ensure a fair comparison with the prior mod-
els, both of which predicted the root, we train RNBert to
predict the root and report the results for both RN+root and
RN-root. It can be seen that the inclusion or exclusion of
the root makes almost no difference, as one would expect.
Finally RNalt refers to an alternate task learned in [6, 10],
replacing the quality, degree, and root predictions with a
vocabulary of the 75 most common Roman numerals in
the AugmentedNet v1 training set. We did not train RN-
Bert on this task, but we report the prior results on it to
facilitate comparison with our results.

When training on the AugmentedNet v1 subset
(Table 4, line 3), RNBert substantially outperforms the
prior models on degree and quality. However, it out-
performs the earlier models by a much more substantial
margin when predicting the composite Roman numeral
RN+root. This implies that there is more coherence among
the various dimensions of its predictions. Such coherence
may be due to the robustness of the representations Mu-
sicBERT learns in its pretraining. It implies that, even
where RNBert’s predictions don’t agree with a human an-
notator’s, they are more likely to be useful, since they are
more likely to be internally consistent.

When training on the complete dataset (Table 4, lines 4–
6), RNBert exceeds the performance of the earlier models
by an even larger margin, especially when predicting the
composite Roman numeral. We defer a discussion of the
effect of key conditioning to Section 4.1.

One thing to note about these results is that, while the
models on lines 4 and 5 greatly exceed the performance of
the models on lines 1–3 on degree, quality, inversion, and
RN-root prediction, when it comes to key prediction, the
AugmentedNet v1-trained models actually perform better
(with the exception of the ChordGNN model). We believe
this occurs because key prediction on the subset is simply
an easier problem, since it contains less music from the late
19th century and beyond, a period when music tended to
modulate more widely.

4.1 Effect of key conditioning

In Table 4, line 6, it can be seen that conditioning the
Roman numeral prediction on the ground-truth key (i.e.,
teacher forcing) has a large effect on degree accuracy. This
constitutes a sanity check that the conditioning works as
expected: if the model knows the key of the annotation,
its ability to predict the Roman numeral’s degree shoots
up. By contrast, key conditioning, with or without teacher
forcing, has little effect on the “quality” and “inversion”
metrics. This is also expected, since these tasks do not
depend on the key: a first-inversion minor chord is a first-
inversion minor chord regardless of the key in which it oc-
curs.

It is somewhat harder to interpret a comparison of RN-
Bert, conditioned on the predicted key (line 5), with the



Accuracy
Model Degree Quality Inversion Key RN+root RN-root RNalt

AugmentedNet v1 data subset
1 AugmentedNet [6] .67 .797 .788 .829 .464 .515
2 ChordGNN+(Post) [10] .714 .784 .803 .813 .518 .529
3 RNBert (key conditioned) .731 .819 .796 .825 .574 .575

All data
4 RNBert (unconditioned) .762 .867 .872 .822 .620
5 RNBert (key conditioned) .749 .864 .872 .823 .624
6 RNBert (key conditioned, teacher forcing) .859 .865 .872 N/A N/A

Table 4. Accuracy of RNBert and two prior models. The meanings of RN+root, RN-root, and RNalt are described in
Section 4. In the model comparison of lines 1–3, we indicate the best metric in bold type. Because the teacher-forcing
model on line 6 does not predict key, and RN prediction involves key prediction, we do not report RN results for this model.

Figure 2. Beethoven, String Quartet in F major, op.
18, no. 1, iv, mm. 7–8. Arguably correct predic-
tions that do not agree with the human annotations are
printed in italic type and serve to illustrate the discussion
in Section 4.2. The prediction printed in strikethrough type
is straightforwardly incorrect and illustrates the discussion
in Section 4.1.

unconditonal RNBert (line 4). The unconditional model
does better predicting degree, but the conditioned model
does better predicting the composite RN-root. These results
make sense if key conditioning makes the key and Roman
numeral predictions more coherent with one another. Even
when the unconditional model does not predict the labeled
key, it should still predict the labeled degree some propor-
tion of the time, causing its degree accuracy to be higher.
The conditional model, on the other hand, should be less
likely to do this, but its composite RN prediction should be
more coherent and thus more accurate.

Figure 2 can serve as an illustration. The two RNBert
analyses are almost identical, being in the key of F ma-
jor throughout, with tonicized dominant chords at the half
cadence that concludes the example. The lone difference
occurs at the cadential 64 chord on the downbeat of the
second measure. Here, while the conditioned model gives
the correct annotation I64/V, the unconditioned analysis
gives I64, which is incorrect, since this is a C major chord,
and the annotated key is F. The unconditioned model’s key
and Roman numeral predictions are each plausible on their

own—I64 is the most common annotation for a cadential
64 chord—but they do not cohere with one another. And
yet, in spite of being incorrect with respect to its predicted
key, this I64 prediction happens to agree with the ground
truth, and thus the degree accuracy of this example is (spu-
riously) higher for the unconditioned model.

4.2 The problem of multiple acceptable analyses

One important problem in evaluating Roman numeral anal-
ysis models is that there is often more than one correct
analysis of a musical passage, so that a model’s predictions
can be labeled “inaccurate” even when they present valid
alternate readings. For example, this may occur with brief
passages in another key, which can be analyzed as either
modulations (indicated by a change of key) or as toniciza-
tions (indicated with secondary Roman numerals).

On a priori grounds, as well as based on qualitative
sampling of the model’s predictions, we suggest that a
high proportion of RNBert’s “inaccurate” predictions are
likely to be acceptable alternate analyses. For example, in
Figure 2, it is reasonable to analyze the half cadence that
concludes the example as a brief modulation to C, as the
human annotator did, or as a tonicization, as done by both
versions of RNBert. Either analysis is acceptable, but the
divergence means that nearly all labels in RNBert’s anal-
ysis do not agree with the ground truth, in spite of being
arguably correct. These considerations may place a ceiling
on the accuracy of all Roman numeral analysis models.

5. CONCLUSION

At the broadest level, our results imply that, by fine-tuning
pretrained models, we can obtain state-of-the-art perfor-
mance on music theory tasks. In the specific case of Ro-
man numeral analysis, we suggest that Roman numeral
analysis models have now matured to the point where they
are ready to be used in large-scale musicological studies.
Finally, we note that the approach described in this paper
could be readily extended to many other music theory tasks
that can be conceived of as a labeling of the notes of a
score, including the analysis of dissonant idioms (suspen-
sions, passing tones, and the like) or melody harmonization
(that is, labeling each pitch of a melody with a chord).
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